

Exercise 03

1. Mathematics of Curvature

a) Consider the function $h(x_1, x_2) = x_1^2 + x_1 x_2 - 2x_2^2$ which we assume describes the shape of a deformed lipid bilayer membrane. x_1 and x_2 are the coordinates of the reference plane below the membrane, as shown in figure 1. Draw a plot of the height as a function of x_1 and x_2 .

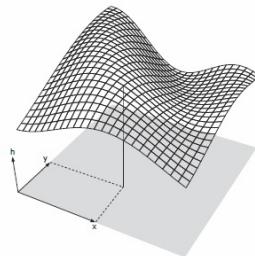


Figure 1: The height function, $h(x, y)$. The surface of the membrane is characterised by a height at each point (x, y) . This height function tells us how the membrane is disturbed locally from its preferred flat reference state.

b) Compute the principle radii of curvature as a function of x_1 and x_2 .

c) Compute the bending free energy for the piece of membrane corresponding to the square $0 \leq x_1 \leq 1$ and $0 \leq x_2 \leq 1$ in the reference plane.

2. Distinguishable ligands

Derive the probability that a receptor is occupied by a ligand using a model which treats the L ligands in solution as distinguishable particles. Show that the expression is:

$$x = \frac{c/c_0 e^{-\beta \Delta \epsilon}}{1 + c/c_0 e^{-\beta \Delta \epsilon}}$$

where the ligands were treated as indistinguishable. c is the ligand concentration, c_0 a reference concentration corresponding to having all sites in the lattice occupied and $\Delta \epsilon = \epsilon_b - \epsilon_{sol}$, with ϵ_b the binding energy for the ligand and receptor and ϵ_{sol} the energy for the ligand in solution.